Minggu, 15 Mei 2016

Manajemen I/O

MANAJEMEN I/O

Sering disebut device manager. Menyediakan “device driver” yang umum sehingga operasi I/O dapat seragam (membuka, membaca, menulis, menutup). Contoh: pengguna menggunakan operasi yang sama untuk membaca file pada hard-disk, CD-ROM dan floppy disk.
Komponen Sistem Operasi untuk sistem I/O :
Buffer : menampung sementara data dari/ke perangkat I/O.
  • Spooling : melakukan penjadwalan pemakaian I/O sistem supaya lebih efisien (antrian dsb.).
  • Menyediakan “driver” untuk dapat melakukan operasi “rinci” untuk perangkat keras I/O tertentu.
  • Manajemen perangkat masukan/keluaran merupakan aspek perancangan sistem
    operasi terluas dan kompleks karena sangat beragamnya perangkat dan
    aplikasinya.
    Beberapa fungsi manajemen input/ouput (I/O) :
    1. Mengirim perintah ke perangkat I/O agar menyediakan layanan.
    2. Menangani interupsi perangkat I/O.
    3. Menangani kesalahan perangkat I/O.
    4. Menyediakan interface ke pemakai.

Klasifikasi perangkat I/O
Perangkat I/O dapat dikelompokkan berdasarkan :
a.         Sifat aliran datanya, yang terbagi atas :
1          Perangkat berorientasi blok.
Yaitu menyimpan, menerima, dan mengirim informasi sebagai blok-blok berukuran tetap yang berukuran 128 sampai 1024 byte dan memiliki alamat tersendiri, sehingga memungkinkan membaca atau menulis blok-blok secara independen, yaitu dapat membaca atau menulis sembarang blok tanpa harus melewati blok-blok lain. Contoh : disk,tape,CD ROM, optical disk.
2          Perangkat berorientasi aliran karakter.
Yaitu perangkat yang menerima, dan mengirimkan aliran karakter tanpa membentuk suatu struktur blok. Contoh : terminal, line printer, pita kertas, kartu-kartu berlubang, interface jaringan, mouse.
b.         Sasaran komunikasi, yang terbagi atas :
1          Perangkat yang terbaca oleh manusia.
Perangkat yang digunakan untuk berkomunikasi dengan manusia.Contoh : VDT (video display terminal) : monitor, keyboard, mouse.
2          Perangkat yang terbaca oleh mesin.
Perangkat yang digunakan untuk berkomunikasi dengan perangkat elektronik.Contoh : Disk dan tape, sensor, controller.
3          Perangkat komunikasi.
Perangkat yang digunakan untuk komunikasi dengan perangkat jarak jauh.Contoh : Modem.
Faktor-faktor yang membedakan antar perangkat :
o Kecepatan transmisi data (data rate).
o Jenis aplikasi yang digunakan.
o Tingkat kerumitan dalam pengendalian.
o Besarnya unit yang ditransfer.
o Representasi atau perwujudan data.
o Kondisi-kondisi kesalahan.Teknik pemograman perangkat I/O

  1. c. Terdapat 3 teknik pemrograman, yaitu :
  2. I/O terprogram atau polling system.
Ketika perangkat I/O menangani permintaan, perangkat men-set bit status di register status perangkat. Perangkat tidak memberitahu ke pemroses saat tugas telah selesai dilakukan sehingga pemroses harus selalu memeriksa register tersebut secara periodik dan melakukan tindakan berdasar status yang dibaca. Software pengendali perangkat (driver) dipemroses harus mentransfer data ke/dari pengendali. Driver mengeksekusi perintah yang berkomunikasi dengan pengendali (adapter) di perangkat dan menunggui sampai operasi yang dilakukan perangkat selesai.Driver berisi kumpulan instruksi :
1 Pengendalian.
Berfungsi mengaktifkan perangkat eksternal dan memberitahu yang perlu dilakukan. Contoh : unit tape magnetik diinstruksikan untuk kembali ke posisi awal, bergerak ke record berikut, dan sebagainya.
2 Pengujian.
Berfungsi memeriksa status perangkat keras berkaitan dengan perangkat I/O.
3 Pembacaan/penulisan
Berfungsi membaca/menulis untuk transfer data antara register pemroses dan perangkat eksternal.Masalah utama I/O terprogram adalah pemroses diboroskan untuk menunggu dan menjagai operasi I/O. Diperlukan teknik lain untuk meningkatkan efisiensi pemroses.
b.         I/O dikendalikan interupsi.
Teknik I/O dituntun interupsi mempunyai mekanisme kerja sebagai berikut :
o Pemroses memberi instruksi ke perangkat I/O kemudian melanjutkan melakukan pekerjaan lainnya.
o Perangkat I/O akan menginterupsi meminta layanan saat perangkat telah siap bertukar data dengan pemroses.
o Saat menerima interupsi perangkat keras (yang memberitahukan bahwa perangkat siap melakukan transfer), pemroses segera mengeksekusi transfer data.
Keunggulan :
o Pemroses tidak disibukkan menunggui dan menjaga perangkat I/O untuk memeriksa status perangkat.
Kelemahan :
o Rate transfer I/O dibatasi kecepatan menguji dan melayani operasi perangkat.
o Pemroses terikat ketat dalam mengelola transfer I/O. Sejumlah intruksi harus dieksekusi untuk tiap transfer I/O.
c.         Dengan DMA (direct memory access).
DMA berfungsi membebaskan pemroses menunggui transfer data yang dilakukan perangkat I/O. Saat pemroses ingin membaca atau menulis data, pemroses memerintahkan DMA controller dengan mengirim informasi berikut :
o Perintah penulisan/pembacaan.
o Alamat perangkat I/O.
o Awal lokasi memori yang ditulis/dibaca.
o Jumlah word (byte) yang ditulis/dibaca.
Setelah mengirim informasi-informasi itu ke DMA controller, pemroses dapat melanjutkan kerja lain. Pemroses mendelegasikan operasi I/O ke DMA. DMA mentransfer seluruh data yang diminta ke/dari memori secara langsung tanpa melewati pemroses. Ketika transfer data selesai, DMA mengirim sinyal interupsi ke pemroses. Sehingga pemroses hanya dilibatkan pada awal dan akhir transfer data. Operasi transfer antara perangkat dan memori utama dilakukan sepenuhnya oleh DMA lepas dari pemroses dan hanya melakukan interupsi bila operasi telah selesai.
Keunggulan :
o Penghematan waktu pemroses.
o Peningkatan kinerja I/O.


Evolusi fungsi perangkat I/O
Sistem komputer mengalami peningkatan kompleksitas dan kecanggihan komponen-komponennya, yang sangat tampak pada fungsi-fungsi I/O sebagai berikut :
a.         Pemroses mengendalikan perangkat I/O secara langsung.
Masih digunakan sampai saat ini untuk perangkat sederhana yang dikendalikan mikroprosessor sehingga menjadi perangkat berintelijen (inteligent device).
b.         Pemroses dilengkapi pengendali I/O (I/O controller).
Pemroses menggunakan I/O terpogram tanpa interupsi, sehingga tak perlu memperhatikan rincian-rincian spesifik antarmuka perangkat.
c.         Perangkat dilengkapi fasilitas interupsi.
Pemroses tidak perlu menghabiskan waktu menunggu selesainya operasi I/O, sehingga meningkatkan efisiensi pemroses.
d.         I/O controller mengendalikan memori secara langsung lewat DMA.
Pengendali dapat memindahkan blok data ke/dari memori tanpa melibatkan pemroses kecuali diawal dan akhir transfer.
e.         Pengendali I/O menjadi pemroses terpisah.
Pemroses pusat mengendalikan.memerintahkan pemroses khusus I/O untuk mengeksekusi program I/O di memori utama. Pemroses I/O mengambil dan mengeksekusi intruksi-intruksi ini tanpa intervensi pemroses pusat. Dimungkinkan pemroses pusat menspesifikasikan barisan aktivitas I/O dan hanya diinterupsi ketika seluruh barisan intruksi diselesaikan.
f.          Pengendali I/O mempunyai memori lokal sendiri.
Perangkat I/O dapat dikendalikan dengan keterlibatan pemroses pusat yang minimum.
Arsitektur ini untuk pengendalian komunikasi dengan terminal-terminal interaktif. Pemroses I/O mengambil alih kebanyakan tugas yang melibatkan pengendalian terminal.
Evolusi bertujuan meminimalkan keterlibatan pemroses pusat, sehingga pemroses tidak disibukkan dengan tugas I/O dan dapat meningkatkan kinerja sistem.
 

Prinsip manajemen perangkat I/O
Terdapat dua sasaran perancangan I/O, yaitu :
a.         Efisiensi.
Aspek penting karena operasi I/O sering menimbulkan bottleneck.
b.         Generalitas (device independence).
Manajemen perangkat I/O selain berkaitan dengan simplisitas dan bebas kesalahan, juga menangani perangkat secara seragam baik dari cara proses memandang maupun cara sistem operasi mengelola perangkat dan operasi I/O.
Software diorganisasikan berlapis. Lapisan bawah berurusan menyembunyikan kerumitanperangkat keras untuk lapisan-lapisan lebih atas. Lapisan lebih atas berurusanmemberi antar muka yang bagus, bersih, nyaman dan seragam ke pemakai. Masalah-masalah manajemen I/O adalah :
a.         Penamaan yang seragam (uniform naming).
Nama berkas atau perangkat adalah string atau integer, tidak bergantung pada perangkat sama sekali.
b.         Penanganan kesalahan (error handling).
Umumnya penanganan kesalahan ditangani sedekat mungkin dengan perangkat keras.
c.         Transfer sinkron vs asinkron.
Kebanyakan I/O adalah asinkron. Pemroses mulai transfer dan mengabaikan untuk melakukan kerja lain sampai interupsi tiba. Program pemakai sangat lebih mudah ditulis jika operasi I/O berorientasi blok. Setelah perintah read, program kemudian ditunda secara otomatis sampai data tersedia di buffer.
d.         Sharable vs dedicated.
Beberapa perangk dapat dipakai bersama seperti disk, tapi ada juga perangkat yang hanya satu pemakai yang dibolehkan memakai pada satu saat. Contoh : printer.



Hirarki manajemen perangkat I/O
Hirarki manajemen perangkat I/O :
a.         Interrupt handler.
Interupsi harus disembunyikan agar tidak terlihat rutin berikutnya. Device driver di blocked saat perintah I/O diberikan dan menunggu interupsi. Ketika interupsi terjadi, prosedur penanganan interupsi bekerja agar device driver keluar dari state blocked.
b.         Device drivers.
Semua kode bergantung perangkat ditempatkan di device driver. Tiap device driver menangani satu tipe (kelas) perangkat dan bertugas menerima permintaan abstrak perangkat lunak device independent diatasnya dan melakukan layanan permintaan.
Mekanisme kerja device driver :
o          Menerjemahkan perintah abstrak menjadi perintah konkret.
o          Setelah ditentukan perintah yang harus diberikan ke pengendali, device driver mulai menulis ke register-register pengendali perangkat.
o          Setelah operasi selesai dilakukan perangkat, device driver memeriksa status kesalahan yang terjadi.
o          Jika berjalan baik, device driver melewatkan data ke perangkat lunak device independent.
o          Kemudian device driver melaporkan status operasinya ke pemanggil.
c.         Perangkat lunak device independent.
Bertujuan membentuk fungsi-fungsi I/O yang berlaku untuk semua perangkat dan memberi antarmuka seragam ke perangkat lunak tingkat pemakai. Fungsi-fungsi lain yang dilakukan :
o          Sebagai interface seragam untuk seluruh device driver.
o          Penamaan perangkat.
o          Proteksi perangkat.
o          Memberi ukuran blok perangkat agar bersifat device independent.
o          Melakukan buffering.
o          Alokasi penyimpanan pada block devices.
o          Alokasi dan pelepasan dedicated devices.
o          Pelaporan kesalahan.
d.         Perangkat lunak level pemakai.
Kebanyakan perangkat lunak I/O terdapat di sistem operasi. Satu bagian kecil berisi pustaka-pustaka yang dikaitkan pada program pemakai dan berjalan diluar kernel. System calls I/O umumnya dibuat sebagai prosedur-prosedur pustaka. Kumpulan prosedur pustaka I/O merupakan bagian sistem I/O. Tidak semua perangkat lunak I/O level pemakai berupa prosedur- prosedur pustaka. Kategori penting adalah sistem spooling. Spooling adalah cara khusus berurusan dengan perangkat I/O yang harus didedikasikan pada sistem multiprogramming.


Buffering I/O
Buffering adalah melembutkan lonjakan-lonjakan kebutuhan pengaksesan I/O, sehingga meningkatkan efisiensi dan kinerja sistem operasi.Terdapat beragam cara buffering, antar lain :
a.         Single buffering.
Merupakan teknik paling sederhana. Ketika proses memberi perintah untuk perangkat I/O, sistem operasi menyediakan buffer memori utama sistem untuk operasi.Untuk perangkat berorientasi blok.Transfer masukan dibuat ke buffer sistem. Ketika transfer selesai, proses memindahkan blok ke ruang pemakai dan segera meminta blok lain. Teknik ini disebut reading ahead atau anticipated input. Teknik ini dilakukan dengan harapan blok akan segera diperlukan. Untuk banyak tipe komputasi, asumsi ini berlaku. Hanya di akhir pemrosesan maka blok yang dibaca tidak diperlukan.
Keunggulan :
Pendekatan in umumnya meningkatkan kecepatan dibanding tanpa buffering. Proses pemakai dapat memproses blok data sementara blok berikutnya sedang dibaca. Sistem operasi dapat menswap keluar proses karena operasi masukan berada di memori sistem bukan memori proses pemakai.
Kelemahan :
o          Merumitkan sistem operasi karena harus mencatat pemberian buffer-buffer sistem ke proses pemakai.
o          Logika swapping juga dipengaruhi. Jika operasi I/O melibatkan disk
untuk swapping, maka membuat antrian penulisan ke disk yang sama yang digunakan untuk swap out proses. Untuk menswap proses dan melepas memori utama tidak dapat dimulai sampai operasi I/O selesai, dimana waktu swapping ke disk tidak bagus untuk dilaksanaka Buffering keluaran serupa buffering masukan. Ketika data transmisi, data lebih dulu dikopi dari ruang pemakai ke buffer sistem. Proses pengirim menjadi bebas untuk melanjutkan eksekusi berikutnya atau di swap ke disk jika perlu.Untuk perangkat berorientasi aliran karakter.
Single buffering dapat diterapkan dengan dua mode, yaitu :
o          Mode line at a time.
Cocok untuk terminal mode gulung (scroll terminal atau dumb terminal). Masukan pemakai adalah satu baris per waktu dengan enter menandai akhir baris. Keluaran terminal juga serupa, yaitu satu baris per waktu.
Contoh mode ini adalah printer.Buffer digunakan untuk menyimpan satu baris tunggal. Proses pemakai ditunda selama masukan, menunggu kedatangan satu baris seluruhnya. Untuk keluaran, proses pemakai menempatkan satu baris keluaran pada buffer dan melanjutkan pemrosesan. Proses tidak perlu suspend kecuali bila baris kedua dikirim sebelum buffer dikosongkan.
o          Mode byte at a time.
Operasi ini cocok untuk terminal mode form, dimana tiap ketikan adalah penting dan untuk peripheral lain seperti sensor dan pengendali.
b.         Double buffering.
Peningkatan dapat dibuat dengan dua buffer sistem.Proses dapat ditransfer ke/dari satu buffer sementara sistem operasi mengosongkan (atau mengisi) buffer lain. Teknik ini disebut double buffering atau buffer swapping. Double buffering menjamin proses tidak menunggu operasi I/O. Peningkatan ini harus dibayar dengan peningkatan kompleksitas. Untuk berorientasi aliran karakter, double buffering mempunyai 2 mode alternatif, yaitu :
o          Mode line at a time.
Proses pemakai tidak perlu ditunda untuk I/O kecuali proses secepatnya mengosongkan buffer ganda.
o          Mode byte at a time.
Buffer ganda tidak memberi keunggulan berarti atas buffer tunggal. Double buffering mengikuti model producer-consumer.
  1. Circular buffering.
Seharusnya melembutkan aliran data antara perangkat I/O dan proses. Jika kinerja proses tertentu menjadi fokus kita, maka kita ingin agar operasi I/O mengikuti proses. Double buffering tidak mencukupi jika proses melakukan operasi I/O yang berturutan dengan cepat. Masalah sering dapat dihindari dengan menggunakan lebih dari dua buffer. Ketika lebih dari dua buffer yang digunakan, kumpulan buffer itu sendiri diacu sebagai circulat buffer. Tiap bufferindividu adalah satu unit di circular buffer.

Manajemen File

MANAJEMEN FILE

Pengertian manajemen file
File system atau manajemen file adalah metode dan struktur data yang digunakan sistem operasi untuk mengatur dan mengorganisir file pada disk atau partisi. File system juga dapat diartikan sebagai partisi atau disk yang digunakan untuk menyimpan file-file dalam cara tertentu. Cara memberi suatu file system ke dalam disk atau partisi dengan cara melakukan Format

Manfaat Manajemen File
Dapat mengurangi resiko kehilangan file yang dikarenakan: terhapus secara tidak disengaja, tertimpa file baru, tersimpan dimana saja, dan hal lain yang tidak kita inginkan
 
Sasaran Manajemen File :
Pengelolaan file adalah kumpulan perangkat lunak sistem yang menyediakan layanan berhubungan dengan penggunaan file ke pemakai dan / atau aplikasi.
Biasanya satu-satunya cara pemakai atau aplikasi mengakses file adalah lewat sistem. Pemakai atau pemrogram tidak perlu mengembangkan perangkat lunak khusus untuk mengakses data di tiap aplikasi. Sistem pun menyediakan pengendalian terhadap aset penting ini.
  1. 1. Sasaran sistem file adalah sebagai berikut :
    1. Memenuhi kebutuhan manajemen data bagi pemakai.
    2. Menjamin data pada file adalah valid.
    3. Optimasi kinerja.
    4. Menyediakan dukungan masukan/keluaran beragam tipe perangkat penyimpanan.
    5. Meminimalkan atau mengeliminasi potensi kehilangan atau perusahaan data.
    6. Menyediakan sekumpulan rutin interface masukan/keluaran.
    7. Menyediakan dukungan masukan/keluaran banyak pemakai di sistem multiuser.
Fungsi Manajemen File :
Beberapa fungsi yang diharapkan dari pengelolaan file adalah :
  1. Penciptaan, modifikasi, dan penghapusan file.
  2. Mekanisme pemakaian file secara bersama.
  3. Kemampuan backup dan recovery untuk mencegah kehilangan karena kecelakaan    atau dari upaya penghancuran informasi.
  4. Pemakai dapat mengacu file dengan nama simbolik (Symbolic name) bukan menggunakan penamaan yang mengacu perangkat fisik.
  5. Pada lingkungan sensitif dikehendaki informasi tersimpan aman dan rahasia.
  6. Sistem file harus menyediakan interface user-friendly.
  1. 2. Arsitektur Pengelolaan File :
Pengelolaan file, biasanya terdiri dari :
  1. Sistem Akses
Berkaitan dengan bagaimana cara data yang disimpan pada file diakses.
  1. Manajemen file
Berkaitan dengan penyediaan mekanisme operasi pada file seperti :
Penyimpanan
Pengacuan
Pemakaian bersama
Pengamanan
  1. Manajemen Ruang Penyimpan
Berkaitan dengan alokasi ruang untuk file di perangkat penyimpan.
  1. Mekanisme Integritas File
Berkaitan dengan jaminan informasi pada file tak terkorupsi. Manajemen Perangkat Masukan / Keluaran di Sistem Operasi : Device Driver
  1. 3. Sistem File
Konsep terpenting dari pengelolaan file di sistem operasi adalah :
File
Abstraksi penyimpanan dan pengambilan informasi di disk. Abstraksi ini membuat pemakai tidak dibebani rincian cara dan letak penyimpanan informasi, serta mekanisme kerja perangkat penyimpan data.
Direktori
Berisi informasi mengenai file. Kebanyakan informasi berkaitan dengan penyimpan. Direktori adalah file, dimiliki sistem operasi dan dapat diakses dengan rutin di sistem operasi. Pemakai memanipulasi data merujuk sebagai file atau direktori. Pemakai tidak dibebani dengan masalah penyimpanan, manipulasi perangkat dan sebagainya.
  1. 4. File, Terhadap beragam pandangan mengenai file, yaitu :
a.         Pemakai :
  • Terhadap file pemakai berkepentingan memahami berikut :
  • Penamaan untuk file
  • Tipe file
  • Atribut file
  • Perintah-perintah untuk manipulasi file.
b.          Pemrograman :
Selain perlu memahami sebagai pemakai, pemrograman perlu memahami:
  • Operasi-operasi terhadap file
  • Perancang,Implementasi pengelolaan file
c.         Penamaan File :
Pemakai mengacu file dengan nama simbolik. Tiap file disistem harus mempunyai nama unik agar tidak ambigu. Penamaan file dengan nama direktori tempat file memberi nama unik. Tidak diperbolehkan nama file yang sama di satu direktori.
Penamaan file berbeda sesuai sistem. Terdapat dua pendekatan yaitu :
  • Sistem yang case – sensitive
  • Sistem case – intensive
  1. Terdapat tiga tipe di sistem operasi, yaitu :
1.    File Reguler, File berisi informasi, terdiri dari file ASCII dan biner. File ASCII berisi baris teks. File biner adalah file yang bukan file ASCII. Untuk file biner eksekusi (exe) mempunyai struktur internal yang hanya diketahui sistem operasi. Untuk file biner hasil program aplikasi, struktur internalnya hanya diketahui program aplikasi yangmenggunakan file tersebut.
2.    File Direktori, File direktori merupakan file yang dimiliki sistem untuk mengelola struktur sistem file. File direktori merupakan file berisi informasi-informasi mengenai file-file yang termasuk dalam direktori itu.
3.    File Spesial, File spesial merupakan nama logik perangkat masukan/keluaran. Perangkat masukan/keluaran dapat dipandang sebagai file. Pemakai dihindarkan dari kerumitan operasi perangkat masukan/keluaran.
File Spesial terbagi dua yaitu :
a.     File spesial karakter, File spesial karakter berhubungan dengan perangkat masukan/keluaran aliran karakter file ini memodelkan perangkat masukan/keluaran seperti:
o   Terminal
o   Printer
o   Port jaringan
o   Modem dan alat –alat yang bukan penyimpan sekunder.
b.         File spesial blok, File spesial blok berhubungan dengan  perangkat masukan/keluaran sebagai kumpulan blok-blok data (berorientasi blok)
  1. Atribut File
Informasi tambahan mengenai file untuk memperjelas dan membatasi operasi-operasi yang dapat diterapkan. Atribut dipergunakan untuk pengelolaan file.
  1. Operasi pada file
o   Create : Menciptakan berkas
o   Delete : Menghapus berkasOpen : Membuka berkas untuk menyimpan proses selanjutnya
o   Close : Menutup berkas utuk menyimpan semua informasi ke berkas dan mendealokasikansumber daya yang digunakan
o   Read : Membaca data pada berkas
o   Write : Memodifikasi data pada berkas, yaitu pada posisi yang ditunjuk
o   Append : Menambah data pada berkas, merupakan operasi write yang lebih spesifik, yaitu di akhir berkas
o   Seek : Mencari lokasi tertentu, hanya berlaku untuk berkas akses lacak Get attributes Membaca atribut-atribut berkas, Set attributes Menuliskan (memodifikasi) atribut-atribut berkas
o   Rename : Mengganti nama berkas
  1. 5. Direktori
Direktori berisi informasi mengenai file. Direktori sendiri adalah file, dimiliki oleh sistem operasi dapat diakses dengan rutin sistem operasi. Meski beberapa informasi direktori tersedia bagi pemakai atau aplikasi, informasi itu umumnya disediakan secara tidak langsung. Pemakai tidak dapat mengakses direktori secara langsung meski dalam mode read-only.
  1. 6. Shared File
Shared file adalah file yang tidak hanya diacu oleh satu direktori (pemakai), tapi juga oleh direktori-direktori (pemakai) lain. Sistem file tidak lagi berupa pohon melainkan directed acyclic graph (DAG).
Masalah-masalah yang terdapat pada shared file adalah sebagai berikut :
  • Metode implementasi shared file
  • Metode pemberian hak akses pada shared file
    • Metode pengendalian atau penanganan terhadap pengaksesan yang secara simultan dilakukan pemakai-pemakai yang mengacu file. Persoalan pengaksesan simultan ini menyangkut integritas atau kogerensi data.
  1. 7. Sistem Akses File
Sistem akses merupakan pilihan, yaitu :
  • Dapat menjadi bagian dari sistem operasi atau
  • Sistem operasi sama sekali tidak mempunyai komponen sistem akses.
Cara akses perangkat penyimpanan :
Perangkap penyimpanan berdasar disiplin pengaksesan dibagi dua, yaitu:
1.           Perangkat akses sekuen (sequential access devices)
2.           Perangkat akses acak (random access devices)
3.          Perangkat akses sekuen, Proses harus membaca semua byte atau rekord file  secara berturutan mulai dari awal, tidak dapat meloncati dan membaca di luar uraian.
  1. 8. Organisasi File
Elemen pokok perancangan sistem akses adalah cara rekord-rekord diorganisasikan atau distrukturkan.
Beberapa kriteria umum untuk pemilihan organisasi file adalah :
  1. Redundansi yang kecil
  2. Pengaksesan yang cepat
  3. Kemudahan dalam memperbaharui
  4. Pemeliharaan yang sederhana
  5. Kehandalan yang tinggi
Terdapat enam organisasi dasar, kebanyakan organisasi file sistem nyata termasuk salah satu atau kombinasi kategori-kategori ini. Enam organisasi atau pengaksesan dasar adalah sebagai berikut :
  1. File pile (pile)
  2. File sekuen (sequential file)
  3. File sekuen berindeks (indexed-sequential file)
  4. File berindeks majemuk (multiple-indexed file)
  5. File ber-hash (hashed or direct file)
  6. File cincin (multi ring file)

Manajemen Proses

MANAJEMEN PROSES PADA SISTEM OPERASI

Manajemen proses merupakan konsep pokok dalam sistem operasi, sehingga masalah manajemen proses adalah masalah utama dalam perancangan sistem operasi. Proses adalah program yang sedang dieksekusi. Proses dapat juga didefinisikan sebagai unit kerja terkecil yang secara individu memiliki sumber daya dan dijadwalkan oleh sistem operasi. Proses berisi instruksi, data, program counter, register pemroses, stack data, alamat pengiriman dan variabel pendukung lainnya.
Sebagaimana proses bekerja, maka proses tersebut merubah state (keadaan statis/ asal). Status dari sebuah proses didefinisikan dalam bagian oleh aktivitas yang ada dari proses tersebut. Tiap proses mungkin adalah satu dari keadaan berikut ini:
􏰀 New: Proses sedang dikerjakan/ dibuat.
􏰀 Running: Instruksi sedang dikerjakan.
􏰀 Waiting: Proses sedang menunggu sejumlah kejadian untuk terjadi (seperti sebuah penyelesaian I/O
􏰀 Ready: Proses sedang menunggu untuk ditugaskan pada sebuah prosesor.
􏰀 Terminated: Proses telah selsesai melaksanakan tugasnya/ mengeksekusi.
PROCESS CONTROL BLOCK
Tiap proses digambarkan dalam sistem operasi oleh sebuah process control block (PCB) – juga
disebut sebuah control block. Sebuah PCB ditunjukkan dalam Gambar 2. PCB berisikan banyak bagian dari informasi yang berhubungan dengan sebuah proses yang spesifik, termasuk ini:
􏰀 Keadaan proses: Keadaan mungkin, new, ready, running, waiting, halted, dan juga banyak
lagi.
􏰀 Program counter: Counter mengindikasikan address dari perintah selanjutnya untuk dijalankan
untuk proses ini.
􏰀 CPU register: Register bervariasi dalam jumlah dan jenis, tergantung pada rancangan
komputer.
􏰀


PENJADWALAN PROSES

Tujuan dari multiprogramming adalah untuk memiliki sejumlah proses yang berjalan pada sepanjang waktu, untuk memaksimalkan penggunaan CPU.
Tujuan dari pembagian waktu adalah untuk mengganti CPU diantara proses-proses yang begitu sering sehingga pengguna dapat berinteraksi dengan setiap program sambil CPU bekerja. Untuk sistem uniprosesor, tidak akan ada lebih dari satu proses berjalan. Jika ada proses yang lebih dari itu, yang lainnya akan harus menunggu sampai CPU bebas dan dapat dijadualkan kembali.
Terdapat 3 konsep dasar Penjadwalan proses yaitu :
Penjadualan Antrian (Scheduling Queue)
Ketika proses memasuki sistem, mereka diletakkan dalam antrian job. Antrian ini terdiri dari seluruh proses dalam sistem. Proses yang hidup pada memori utama dan siap dan menunggu/ wait untuk mengeksekusi disimpan pada sebuah daftar bernama ready queue. Antrian ini biasanya disimpan sebagai daftar penghubung. Sebuah header ready queue berisikan penunjuk kepada PCB-PCB awal dan akhir. Setiap PCB memiliki pointer field yang menunjukkan proses selanjutnya dalam ready queue.
Penjadual / Scheduler
Sebuah proses berpindah antara berbagai penjadualan antrian selama umur hidupnya. Sistem
operasi harus memilih, untuk keperluan penjadualan, memproses antrian-antrian ini dalam cara tertentu. Pemilihan proses dilaksanakan oleh penjadual yang tepat/ cocok. Dalam sistem batch, sering ada lebih banyak proses yang diserahkan daripada yang dapat dilaksanakan segera. Proses ini dipitakan/ disimpan pada suatu alat penyimpan masal (biasanya disket), dimana proses tersebut disimpan untuk eksekusi dilain waktu. Penjadualan long term, atau penjadual job, memilih proses dari pool ini dan mengisinya kedalam memori eksekusi.
Alih Konteks / Switch Context
Mengganti CPU ke proses lain memerlukan penyimpanan suatu keadaan proses lama (state of old
process) dan kemudian beralih ke proses yang baru. Tugas tersebut diketahui sebagai alih konteks (context switch). Alih konteks sebuah proses digambarkan dalam PCB suatu proses; termasuk nilai dari CPU register, status proses (lihat Gambar 7). dan informasi managemen memori. Ketika alih konteks terjadi, kernel menyimpan konteks dari proses lama kedalam PCB nya dan mengisi konteks yang telah disimpan dari process baru yang telah terjadual untuk berjalan. Pergantian waktu konteks adalah murni overhead, karena sistem melakukan pekerjaan yang tidak perlu. Kecepatannya bervariasi dari mesin ke mesin, bergantung pada kecepatan memori, jumlah register yang harus di copy, dan keberadaan instruksi khusus (seperti instruksi tunggal untuk mengisi atau menyimpan seluruh register). Tingkat kecepatan umumnya berkisar antara 1 sampai 1000 mikro detik
OPERASI PADA PROSES
Proses dalam sistem dapat dieksekusi secara bersama-sama, proses tersebut harus dibuat dan dihapus secara dinamis. Maka, sistem operasi harus menyediakan suatu mekanisme untuk pembuatan proses dan erminasi proses. Sistem operasi dalam mengelola proses dapat melakukan operasi-operasi terhadap proses. Operasi tersebut adalah :
a. Penciptaan proses
b. Penghancuran/terminasi proses
c. Penundaan proses
d. Pelanjutan kembali proses
e. Pengubahan prioritas proses
f. Memblok proses
g. Membangunkan proses
h. Menjadwalkan proses
i. Memungkinkan proses berkomunikasi dengan proses lain
Pembuatan Proses
Melibatkan banyak aktivitas, yaitu :
a. Memberi identitas proses
b. Menyisipkan proses pada senarai atau tabel proses
c. Menentukan prioritas awal proses
d. Menciptakan PCB
e. Mengalokasikan sumber daya awal bagi proses
Ketika proses baru ditambahkan, sistem operasi membangun struktur data untuk mengelola dan
mengalokasikan ruang alamat proses.
Kejadian yang dapat menyebabkan penciptaan proses :
a. Pada lingkungan batch, sebagai tanggapan atas pemberian satu kerja (job). Sistem operasi dengan kendali batch job, setelah menciptakan proses baru, kemudian melanjutkan membaca job berikutnya.
b. Pada lingkungan interaktif, ketika pemakai baru berusaha logon.
c. Sebagai tanggapan suatu aplikasi, seperti permintaan pencetakan file, sistem operasi dapat menciptakan proses yang akan mengelola pencetakan itu. Sistem operasi menciptakan proses untuk memenuhi satu fungsi pada program pemakai, tanpa mengharuskan pemakai menunggu.
d. Proses penciptaan proses lain (proses anak). Untuk mencapai modularitas atau mengeksploitasi
kongkurensi, program pemakai memerintahkan pembuatan sejumlah proses.
Tahap-tahap penciptaan proses
Penciptaan proses dapat disebabkan beragam sebab. Penciptaan proses meliputi beberapa tahap :
1. Beri satu identifier unik ke proses baru. Isian baru ditambahkan ke tabel proses utama yang berisi satu isian perproses.
2. Alokasikan ruang untuk proses.
3. PCB harus diinisialisasi.
4. Kaitan-kaitan antar tabel dan senarai yang cocok dibuat.
5. Bila diperlukan struktur data lain maka segera dibuat struktur data itu.
Penghancuran / Terminasi Proses
Penghancuran proses melibatkan pembebasan proses dari sistem, yaitu :
a. Sumber daya-sumber daya yang dipakai dikembalikan.
b. Proses dihancurkan dari senarai atau tabel sistem.
c.PCB dihapus (ruang memori PCB dikembalikan ke pool memori bebas).
ci.
Penghancuran lebih rumit bila proses telah menciptakan proses-proses lain. Terdapat dua pendekatan,
yaitu :
a. Pada beberapa sistem, proses-proses turunan dihancurkan saat proses induk dihancurkan secara otomatis.
b. Beberapa sistem lain menganggap proses anak independen terhadap proses induk, sehingga proses anak tidak secara otomatis dihancurkan saat proses induk dihancurkan.
Alasan penghancuran proses :
1 Selesainya proses secara manual. Proses mengeksekusi panggilan layanan sistem operasi untuk menandakan bawah proses telah berjalan secara lengkap.
2 Batas waktu telah terlewati. Proses telah berjalan melebihi batas waktu total yang dispesifikasikan.
3 Memori tidak tersedia. Proses memerlukan memori lebih banyak daripada yang dapat disediakan sistem.
4 Pelanggaran terhadap batas memori Proses mencoba mengakses lokasi memori yang tidak diijinkan diakses.
5 Terjadi kesalahan karena pelanggaran proteksi
6 Terjadi kesalahan aritmatika
7 Waktu telah kedaluwarsa
8 Terjadi kegagalan Masukan/keluaran
9 Instruksi yang tidak benar
10 Terjadi usaha memakai nstruksi yang tidak Diijinkan
11 Kesalahan Penggunaan data Bagian data adalah tipe yang salah atau tidak diinisialisasi.
12 Diintervensi oleh sistem operasi
13 Berakhirnya proses induk
14 Atas permintaan dari proses induk
Proses yang Kooperatif
Proses yang bersifat simultan (concurrent) dijalankan pada sistem operasi dapat dibedakaan menjadi yaitu proses independent dan proses kooperatif. Suatu proses dikatakan independen apabila proses tersebut tidak dapat terpengaruh atau dipengaruhi oleh proses lain yang sedang dijalankan pada sistem.
Komunikasi Proses Dalam Sistem
Cara lain untuk meningkatkan efek yang sama adalah untuk sistem operasi yaitu untuk menyediakan alat-alat proses kooperatif untuk berkomunikasi dengan yang lain lewat sebuah komunikasi dalam proses (IPC = Inter-Process Communication). IPC menyediakan sebuah mekanisme untuk mengizinkan proses- proses untuk berkomunikasi dan menyelaraskan aksi-aksi mereka tanpa berbagi ruang alamat yang sama. IPC adalah khusus digunakan dalam sebuah lingkungan yang terdistribusi dimana proses komunikasi tersebut mungkin saja tetap ada dalam komputer-komputer yang berbeda yang tersambung dalam sebuah jaringan. IPC adalah penyedia layanan terbaik dengan menggnakan sebuah sistem penyampaian pesan, dan sistem- sistem pesan dapat diberikan dalam banyak cara.
Sistem Penyampaian Pesan
Fungsi dari sebuah sistem pesan adalah untuk memperbolehkan komunikasi satu dengan yang lain
tanpa perlu menggunakan pembagian data. Sebuah fasilitas IPC menyediakan paling sedikit dua operasi yaitu kirim (pesan) dan terima (pesan). Pesan dikirim dengan sebuah proses yang dapat dilakukan pada ukuran pasti atau variabel. Jika hanya pesan dengan ukuran pasti dapat dikirimkan, level sistem implementasi adalah sistem yang sederhana. Pesan berukuran variabel menyediakan sistem implementasi level yang lebih kompleks.
Berikut ini ada beberapa metode untuk mengimplementasikan sebuah jaringan dan operasi
pengiriman/penerimaan secara logika:
Komunikasi langsung atau tidak langsung.
Komunikasi secara simetris/ asimetris.
Buffer otomatis atau eksplisit.
engiriman berdasarkan salinan atau referensi.
Pesan berukuran pasti dan variabel.
THREAD
Model proses yang didiskusikan sejauh ini telah menunjukkan bahwa suatu proses adalah sebuah
program yang menjalankan eksekusi thread tunggal. Sebagai contoh, jika sebuah proses menjalankan sebuah program Word Processor, ada sebuah thread tunggal dari instruksi-instruksi yang sedang dilaksanakan.
Konsep Dasar
Secara informal, proses adalah program yang sedang dieksekusi. Ada dua jenis proses, proses berat
(heavyweight) atau biasa dikenal dengan proses tradisional, dan proses ringan atau kadang disebut thread.
Thread saling berbagi bagian program, bagian data dan sumber daya sistem operasi dengan thread
lain yang mengacu pada proses yang sama. Thread terdiri atas ID thread, program counter, himpunan register, dan stack. Dengan banyak kontrol thread proses dapat melakukan lebih dari satu pekerjaan pada waktu yang sama.
User Threads
User thread didukung oleh kernel dan diimplementasikan oleh thread library ditingkat pengguna.
Library mendukung untuk pembentukan thread, penjadualan, dan managemen yang tidak didukung oleh
kernel.
Kernel Threads
Kernel thread didukung secara langsung oleh sistem operasi: pembentukan thread, penjadualan, dan managemen dilakukan oleh kernel dalam ruang kernel. Karena managemen thread telah dilakukan oleh sistem operasi, kernel thread biasanya lebih lambat untuk membuat dan mengelola daripada pengguna thread.
Model Multithreading
Dalam sub bab sebelumnya telah dibahas pengertian dari thread, keuntungannya, tingkatan atau
levelnya seperti pengguna dan kernel. Sistem-sistem yang ada sekarang sudah banyak yang bisa mendukung untuk kedua pengguna dan kernel thread, sehingga model-model multithreading-nya pun menjadi beragam. Implementasi multithreading yang umum akan kita bahas ada tiga, yaitu model many-to-one, one-to-one, dan many-to-many.
Model Many to One
Model many-to-one ini memetakan beberapa tingkatan pengguna thread hanya ke satu buah kernel
thread. Managemen proses thread dilakukan oleh (di ruang) pengguna, sehingga menjadi efisien, tetapi apabila sebuah thread melakukan sebuah pemblokingan terhadap sistem pemanggilan, maka seluruh proses akan berhenti (blocked). Kelemahan dari model ini adalah multihreads tidak dapat berjalan atau bekerja secara paralel di dalam multiprosesor dikarenakan hanya satu thread saja yang bisa mengakses kernel dalam suatu waktu.
Model One to One
Model one-to-one memetakan setiap thread pengguna ke dalam satu kernel thread. Hal ini membuat model one-to-one lebih sinkron daripada model many-to-one dengan mengizinkan thread lain untuk berjalan ketika suatu thread membuat pemblokingan terhadap sistem pemanggilan; hal ini juga mengizinkan multiple thread untuk berjalan secara parallel dalam multiprosesor. Kelemahan model ini adalah dalam pembuatan thread pengguna dibutuhkan pembuatan korespondensi thread pengguna. Karena dalam proses pembuatan kernel thread dapat mempengaruhi kinerja dari aplikasi maka kebanyakan dari implementasi model ini membatasi jumlah thread yang didukung oleh sistem. Model one-to-one diimplementasikan oleh Windows NT dan OS/2.
Model Many to Many
Beberapa tingkatan thread pengguna dapat menggunakan jumlah kernel thread yang lebih kecil atau sama dengan jumlah thread pengguna. Jumlah dari kernel thread dapat dispesifikasikan untuk beberapa aplikasi dan beberapa mesin (suatu aplikasi dapat dialokasikan lebih dari beberapakernel thread dalam multiprosesor daripada dalam uniprosesor) dimana model many-to-one mengizinkan pengembang untuk membuat thread pengguna sebanyak mungkin, konkurensi tidak dapat tercapai karena hanya satu thread yang dapat dijadualkan oleh kernel dalam satu waktu. Model one-to-one mempunyai konkurensi yang lebih tinggi, tetapi pengembang harus hati-hati untuk tidak membuat terlalu banyak thread tanpa aplikasi dan dalam kasus tertentu mungkin jumlah thread yang dapat dibuat dibatasi.

Senin, 09 Mei 2016

Senin, 25 April 2016

Manajemen Memori


Memori adalah pusat dari operasi pada sistem komputer modern, berfungsi sebagai tempat penyimpanan informasi yang harus diatur dan dijaga sebaik-baiknya. Memori adalah array besar dari word atau byte, yang disebut alamat. CPU mengambil instruksi dari memory berdasarkan nilai dari program counter. Instruksi ini menyebabkan penambahan muatan dari dan ke alamat memori tertentu. Sedangkan manajemen memori adalah suatu kegiatan untuk mengelola memori komputer. Proses ini menyediakan cara mengalokasikan memori untuk proses atas permintaan mereka, membebaskan untuk digunakan kembali ketika tidak lagi diperlukan serta menjaga alokasi ruang memori bagi proses. Pengelolaan memori utama sangat penting untuk sistem komputer.
Berikut  kami sajikan bahasan-bahasan yang terkait dengan memori :

MANAJEMEN MEMORI
1.      Definisi Manajemen Memori
Manjemen memori (Memory Manager) adalah salah satu bagian sistem operasi yang mempengaruhi dalam menentukan proses mana yang diletakkan pada antrian. Manajemen memori DOS merupakan mekanisme pengaturan memori pada sistem operasi DOS. Sistem operasi berjalan dalam modus real dengan arsitektur berbasis prosesor intel x86. Dalam modus real, hanya 20-bit pertama dari bus alamat yang akan digunakan oleh sistem operasi untuk mengakses memori, sehingga menjadikan jumlah memori yang dapat diakses hanya mencapai 220=1048576 bytes (1 MB) saja, dari yang seharusnya 32-bit/40-bit pada prosesor-prosesor modern. Ada beberapa macam jenis memori diantaranya :

- Memori Kerja
• ROM/PROM/EPROM/EEPROM
• RAM
• Cache memory
- Memori Dukung
· Floppy, harddisk, CD, dll.

2 .      Manajemen Memori
Terdapat 2 (dua) manajemen memori yaitu :
a. Manajeman memori statis
Dengan pemartisian statis, jumlah, lokasi dan ukuran proses dimemori tidak beragam sepanjang waktu secara tetap.
b. Manajemen memori dinamis
Dengan pemartisian dinamis , jumlah, lokasi dan ukuran proses dimemori dapat beragam sepanjang waktu secara dinamis.

Manajemen Memori Berdasarkan Alokasi memori Terdapat 2 (dua) cara menempatkan informasi ke dalam memori kerja, yaitu:
a. Alokasi Memori Berurutan (Contiguous Allocation)
Pada alokasi memori berurutan, setiap proses menempati satu blok tunggal lokasi memori yang berurutan.
Kelebihan : sederhana, tidak ada rongga memory bersebaran, proses berurutan dapat dieksekusi secara cepat.
Kekurangan : memori boros, tidak dapat disisip apabila tidak ada satu blok memori yang mencukupi
b. Alokasi Memori Tak Berurutan (Non Contiguous Allocation)
Program/proses ditempatkan pada beberapa segmen berserakan, tidak perlu saling berdekatan atau berurutan. Biasanya digunakan untuk lokasi memori maya sebagai lokasi page-page.
Kelebihan : sistem dapat memanfaatkan _ memori utama secara lebih efesien, dan sistem opersi masih dapat menyisip proses bila jumlah lubang-lubang memori cukup untuk memuat proses yang akan dieksekusi.
Kekurangan : memerlukan pengendalian yang lebih rumit dan memori jadi banyak yang berserakan tidak terpakai.
c. Penggunaan memori
Pencocokan ukuran informasi ke penggalan memori kerja disebut sebagai fit. Bagian dari memori kerja yang tidak terpakai dan letaknya tersebar di banyak wilayah memori kerja disebut sebagai fragmen. Peristiwa terjadinya fragmen disebut fragmentasi
d. Pencocokan (fit) dan fragmentasi
Beberapa jenis strategi pencocokan antara lain:
1. Cocok pertama (first fit)
Pencocokan terjadi menurut antrian informasi
2. Cocok pertama berdaur (cyclical first fit)
Pencocokan tidak harus dimulai dari urutan penggalan memori yang pertama, tetapi dapat dilakukan setelah terjadi pencocokan sebelumnya.
3. Cocok terbaik (best fit)
Pencocokan dilakukan sesuai dengan penggalan memori yang ukurannya pas.
4. Cocok terburuk (Worst fit)
Informasi akan menempati penggalan yang ukurannya terbesar.
e. Fragmentasi
Menurut prosesnya terdapat dua macam fragmentasi :
a. Fragmentasi internal
Kelebihan memori pada penggalan memori ketika penggalan memori itu menerima penggalan informasi yang berukuran kurang dari ukuran penggalan memori.
b. Fragmentasi Ekternal
Penggalan memori bebas yang ukurannya terlalu kecil untuk dapat menampung penggalan informasi yang akan dimuat ke penggalan memori itu.
Contoh : Proses

3. Fungsi manajemen memori :
Manajemen memori sangat penting untuk memproses dan fasilitas masukan/keluaran secara efisien, sehingga memori dapat menampung sebanyak mungkin proses dan sebagai upaya agar pemrogram atau proses tidak dibatasi kapasitas memori fisik di sistem komputer.  Berikut ini kami sebutkan fungsi manajemen memori diantaranya :
1.Mengelola informasi memori yang dipakai dan tidak dipakai.
2.Mengalokasikan memori ke proses yang memerlukan.
3.Mendealokasikan memori dari proses yang telah selesai.
4.Mengelola swapping antara memori utama dan disk.


4.  Manajemen memori berdasarkan keberadaan swapping atau paging
Terbagi dua yaitu :
1.      Manajemen tanpa swapping atau paging
Yaitu manajemen memori tanpa pemindahan citra proses antara memori utama dan disk selama eksekusi. Yang terdiri dari :
Ø  Monoprogramming, ciri-cirinya:
- Hanya satu proses pada satu saat
- Hanya satu proses menggunakan semua memori
- Pemakai memuatkan program ke seluruh memori dari disk atau tape
- Program mengambil kendali seluruh mesin
Ø  Multiprogramming Dengan Pemartisian Statis
Terbagi dua :
- Pemartisian menjadi partisi-partisi berukuran sama, yaitu ukuran semua partisi memori adalah sama
- Pemartisian menjadi partisi-partisi berukuran berbeda, yaitu ukuran semua partisi memori adalah berbeda
   Strategi Penempatan Program Ke Partisi
·      Satu Antrian Tunggal Untuk Semua Partisi
Keuntungan : Lebih fleksibel serta implementasi dan operasi lebih minimal karena hanya mengelola satu antrian.
Kelemahan : Proses dapat ditempatkan di partisi yang banyak diboroskan, yaitu proses kecil ditempatkan di partisi sangat besar.
·      Satu Antrian Untuk Tiap Partisi (banyak antrian Untuk Seluruh Partisi) . Keuntungan : Meminimalkan pemborosan memori
Kelemahan : Dapat terjadi antrian panjang di suatu partisi sementara antrian partisi - partisi lain kosong
2.      Manajemen dengan swapping atau paging
Swapping : pemindahan proses dari memori utama ke disk dan kembali lagi.
1. Multiprogramming dengan Pemartisisan Dinamis
Jumlah , lokasi dan ukuran proses di memori dapat beragam sepanjang waktu secara dinamis.
Kelemahan:
- Dapat terjadi lubang-lubang kecil memori di antara partisi-partisi yang dipakai.
- Merumitkan alokasi dan dealokasi memori
2. Pencatatan Pemakaian memori
- Pencatatan memakai peta bit (Bit Map)
- Pencatatan memakai linked list


5. Sistem Buddy
Sistem buddy adalah algoritma pengelolaan memori yang memanfaatkan kelebihan penggunaan bilangan biner dalam pengalamatan memori. Karakteristik bilangan biner digunakan untuk mempercepat Penggabungan lubang-lubang berdekatan ketika proses Terakhir atau dikeluarkan. Mekanisme pengelolaan sistem buddy tersebut memiliki keunggulan dan kelemahan.
Keunggulan Sistem Buddy
1. Sistem buddy mempunyai keunggulan dibanding algoritma-algoritma yang mengurutkan blok-blok berdasarkan ukuran. Ketika blok berukuran 2k dibebaskan, maka manajer memori hanya mencari pada senarai lubang 2k untuk memeriksa apakah dapat dilakukan  penggabungan. Pada algoritma algoritma lain yang memungkinkan blok-blok memori dipecah dalam sembarang ukuran, seluruh senarai harus dicari.
2. Dealokasi pada sistem buddy dapat dilakukan dengan cepat.
Kelemahan Sistem Buddy
1. Utilisasi memori pada sistem buddy sangat tidak efisien.
2. Masalah ini muncul dari dari kenyataan bahwa semua permintaan dibulatkan ke 2k terdekat yang dapat memuat. Proses berukuran 35 kb harus dialokasikan di 64 kb, terdapat 29 kb yang disiakan. Overhead ini disebut fragmentasi internal karena memori yang disiakan adalah internal terhadap segmen-segmen yang dialokasikan